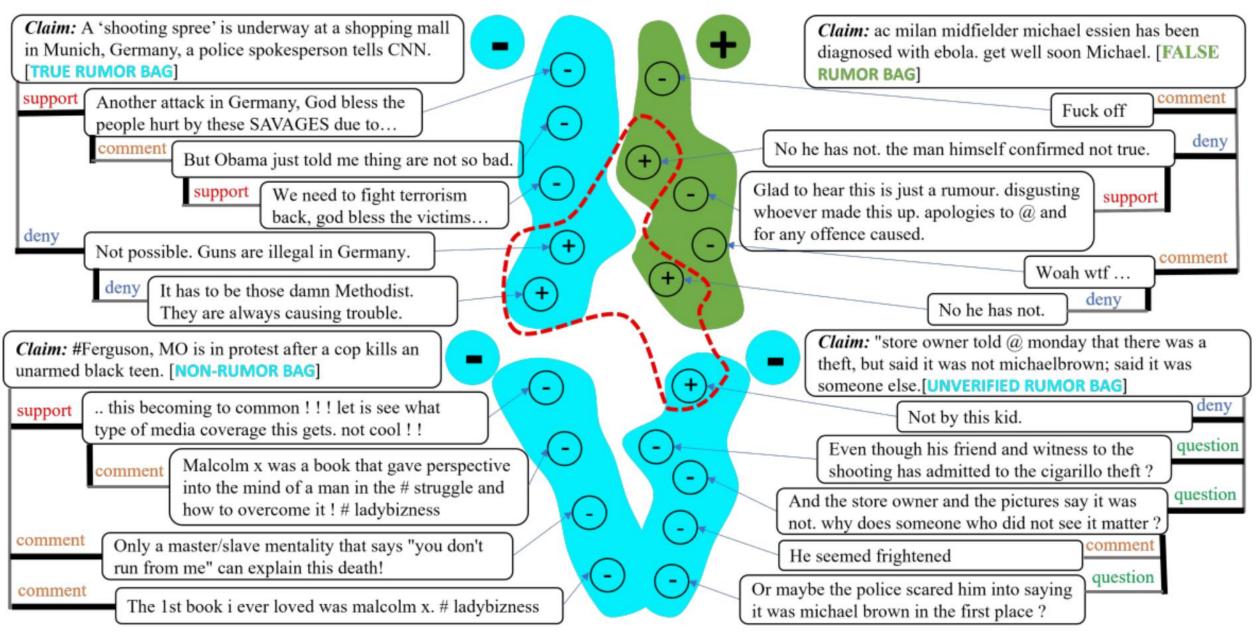


A Weakly Supervised Propagation Model for Rumor Verification and Stance Detection with Multiple Instance Learning

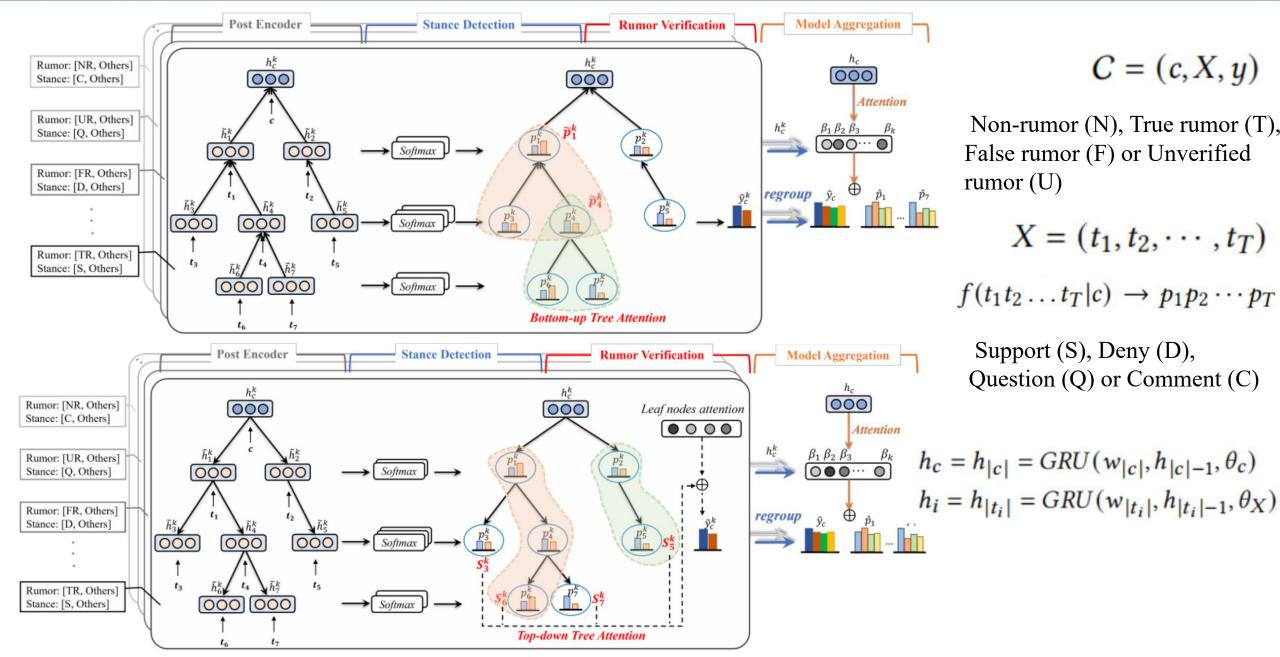
Ruichao Yang Hong Kong Baptist University Hong Kong SAR, China csrcyang@comp.hkbu.edu.hk

Hongzhan Lin Beijing University of Posts and Telecommunications Beijing, China linhongzhan@bupt.edu.cn Jing Ma Hong Kong Baptist University Hong Kong SAR, China majing@comp.hkbu.edu.hk

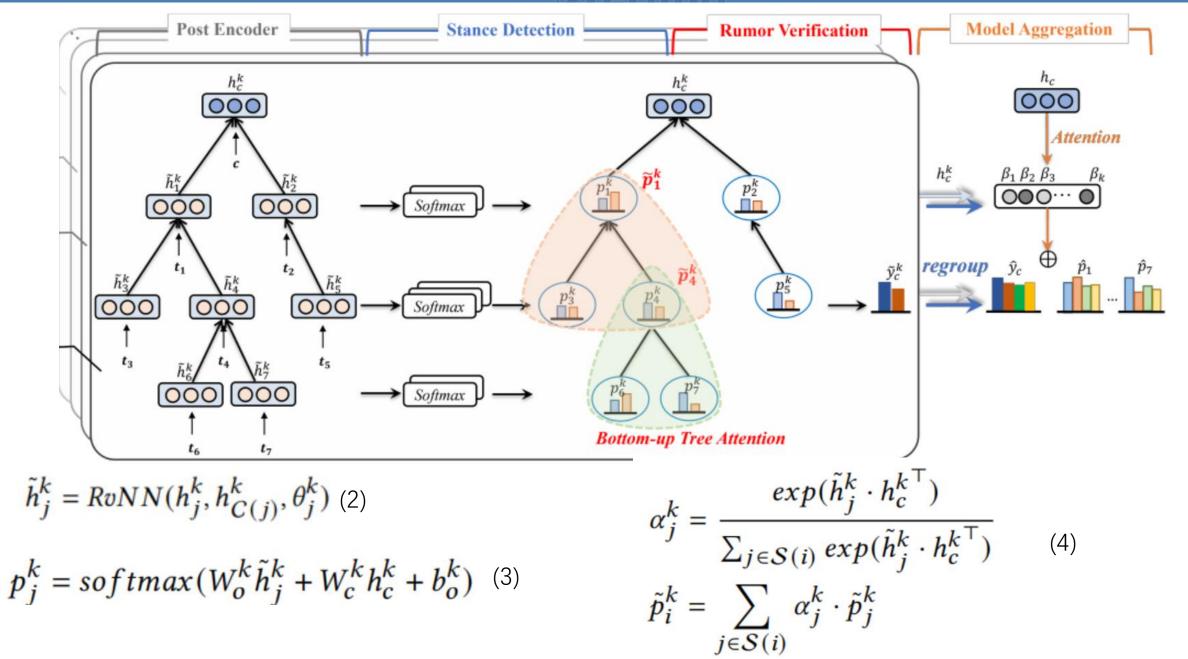
Wei Gao Singapore Management University Singapore weigao@smu.edu.sg

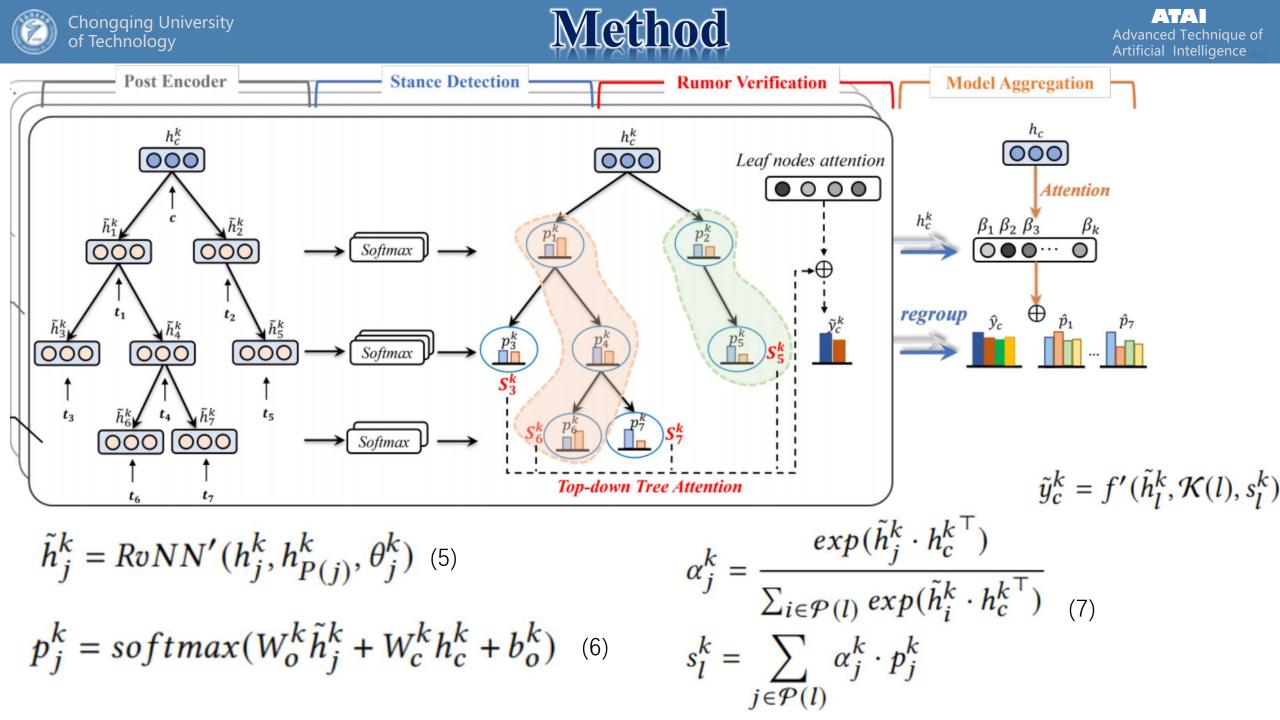

SIGIR2022

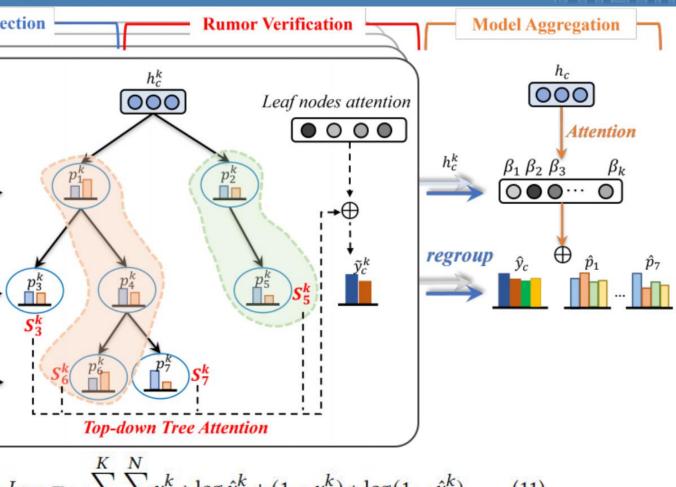
Reported by Xiaoke Li



Introduction







$$L_{bin} = -\sum_{k=1}^{k} \sum_{n=1}^{k} y_n^k * \log \hat{y}_n^k + (1 - y_n^k) * \log(1 - \hat{y}_n^k)$$
(11)

 $L_{agg} = -\sum_{n=1}^{N} \sum_{m=1}^{M} y_{m,n} * \log \hat{y}_{m,n} + (1 - y_{m,n}) * \log(1 - \hat{y}_{m,n})$ (12)

$$h_{a} = GRU(w_{|c|}, h_{|c|-1}, \theta_{a})$$

$$\beta_{k} = \frac{exp(h_{a} \cdot h_{c}^{k^{\top}})}{\sum_{k} exp(h_{a} \cdot h_{c}^{k^{\top}})}$$
(8)

Method

$$\hat{p}_{i,l'} = \sum_{k \in U(l')} \beta_k \cdot p_i^k, \qquad (9)$$

where $U(l'_s)$ represents the indicator set of the binary classifiers with $l'_s \in [S, D, Q, C]$ as the target class, p_i^k is the predicted stance probability of the post from classifier k, therefore, \hat{p}_{i,l'_s} indicates the probability that the post t_i should be classified as stance l'_s . Thus, the predicted probability distribution over all the stances can be obtained, i.e., $\hat{p}_i = [\hat{p}_{i,S}, \hat{p}_{i,D}, \hat{p}_{i,Q}, \hat{p}_{i,C}]$.

$$\hat{y}_{l'_r} = g'(\beta_k, \tilde{y}^k)$$
$$\hat{y} = [\hat{y}_N, \hat{y}_T, \hat{y}_F, \hat{y}_U]$$

 $y^{k} = \begin{cases} 1 & \text{if the target of classifier } k \text{ is the same as } y \\ 0 & \text{others} \end{cases}$ (10)

Table 1: Statistics of rumor datasets for model training.

Statistics	Twitter15	Twitter16	PHEME		
# of claim	1,308	818	6,425		
# of Non-rumor	374 (28.6%)	205 (25.1%)	4,023 (62.6%)		
# of False-rumor	370 (28.3%)	207 (25.3%)	638 (9.9%)		
# of True-rumor	190 (14.5%)	205 (25.1%)	1,067 (16.6%)		
# of Unverified-rumor	374 (28.6%)	201 (24.5%)	697 (10.8%)		
# tree nodes	68026	40867	383569		
# of Avg. posts/tree	52	50	6		
# of Max. posts/tree	814	757	228		
# of Min. posts/tree	1	1	3		

Table 2: Statistics of the datasets for model testing.

Statistics	RumorEval2019-S	SemEval8		
# of claim	425	297		
# of Non-rumor	100 (23.53%)			
# of False-rumor	74 (17.41%)	62 (20.8%)		
# of True-rumor	145 (34.12%)	137 (46.1%)		
# of Unverified-rumor	106 (24.94%)	98 (33.0%)		
# posts of Support	1320 (19.65%)	645 (15.1%)		
# posts of Deny	522 (7.77%)	334 (7.8%)		
# posts of Question	531 (7.90%)	361 (8.5%)		
# posts of Comment	4,345 (64.68%)	2,923 (68.6%)		
# tree nodes	6,718	4,263		
# Avg. posts/tree	16	14		
# Max. posts/tree	249	228		
# Min. posts/tree	2	3		

Table 3: Results on stance detection: our methods achieve p-value < 0.05 under t-test for Robustness consideration.

Dataset	RumourEval2019-S								SemEval8							
Method				S	D	Q	С)	S	D	Q	С		
Method	AUC	MicF	MacF	F_1	F_1	F_1	F_1	AUC	MicF	MacF	F_1	F_1	F_1	F_1		
Zero-Shot	-	0.369	0.324	0.301	0.168	0.342	0.486	-	0.383	0.344	0.278	0.162	0.480	0.456		
Pre-Rule	-	0.605	0.478	0.657	0.419				0.429	0.389	0.432	0.644				
C-GCN	0.633	0.629	0.416	0.331	0.173	0.429	0.730	0.610	0.625	0.411	0.327	0.161	0.430	0.728		
BrLSTM(V)	0.71	0.66	0.42	0.460	0	0.391	0.758	0.676	0.665	0.401	0.493	0	0.381	0.730		
BiGRU(V)	0.7	0.63	0.417	0.392	0.162	0.360	0.754	0.660	0.633	0.416	0.460	0.168	0.328	0.708		
MT-GRU(V)	0.714	0.636	0.432	0.313	0.156	0.506	0.748	0.669	0.630	0.413	0.498	0.116	0.312	0.729		
TD-MIL(V)	0.712	0.65	0.432	0.438	0.156	0.408	0.688	0.668	0.626	0.416	0.473	0.127	0.463	0.602		
BU-MIL(V)	0.71	0.63	0.431	0.485	0.166	0.396	0.688	0.669	0.623	0.415	0.470	0.128	0.460	0.602		
TD-MIL(T15)	0.706	0.668	0.427	0.339	0.173	0.444	0.752	0.663	0.642	0.418	0.330	0.174	0.420	0.750		
TD-MIL(T16)	0.713	0.665	0.436	0.350	0.182	0.446	0.758	0.660	0.671	0.421	0.334	0.173	0.422	0.754		
TD-MIL(PHE)	0.722	0.691	0.434	0.344	0.179	0.467	0.767	0.669	0.651	0.426	0.335	0.175	0.430	0.763		
BU-MIL(T15)	0.706	0.662	0.428	0.341	0.173	0.436	0.756	0.661	0.638	0.415	0.326	0.168	0.420	0.748		
BU-MIL(T16)	0.701	0.66	0.426	0.340	0.170	0.438	0.749	0.659	0.637	0.416	0.324	0.169	0.419	0.753		
BU-MIL(PHE)	0.707	0.665	0.432	0.344	0.174	0.445	0.762	0.666	0.642	0.420	0.329	0.169	0.423	0.758		

Table 4: Results on Rumor Verification: our methods achieve p-value < 0.05 under t-test for Robustness consideration.

Dataset	ſ		Rum	orEval20	019-S					Sem	Eval8		
Method				Т	F	U	N				Т	F	U
Method	AUC	MicF	MacF	<i>F</i> ₁	F_1	F_1	F_1	AUC	MicF	MacF	<i>F</i> ₁	F_1	F_1
GCAN	0.693	0.645	0.253	0.249	0.31	0.113	0.339	0.688	0.645	0.255	0.241	0.326	0.198
PPC	0.672	0.632	0.25	0.244	0.296	0.114	0.346	0.673	0.642	0.249	0.237	0.289	0.221
TD-RvNN	0.88	0.743	0.699	0.713	0.631	0.660	0.792	0.882	0.728	0.689	0.702	0.619	0.745
BU-RvNN	0.865	0.720	0.723	0.746	0.641	0.696	0.806	0.870	0.708	0.684	0.708	0.620	0.723
H-GCN	0.69	0.534	0.418	0.712	0.180	0.371	0.409	0.675	0.530	0.413	0.355	0.16	0.724
MTL2 (V)	0.683	0.653	0.43	0.622	0.279	0.352	0.457	0.680	0.651	0.433	0.640	0.289	0.372
MT-GRU (V)	0.704	0.768	0.452	0.462	0.298	0.373	0.452	0.701	0.761	0. <mark>4</mark> 28	0.639	0.254	0.391
TD-MIL (V)	0.685	0.678	0.45	0.667	0.329	0.376	0.428	0.680	0.621	0.436	0.650	0.274	0.384
BU-MIL (V)	0.682	0.679	0.448	0.668	0.326	0.373	0.428	0.680	0.645	0.427	0.631	0.292	0.360
TD-MIL (T15)	0.919	0.793	0.79	0.822	0.762	0.716	0.818	0.913	0.771	0.730	0.679	0.689	0.823
TD-MIL (T16)	0.914	0.792	0.764	0.796	0.740	0.719	0.812	0.899	0.785	0.725	0.668	0.682	0.825
TD-MIL (Phe)	0.917	0.809	0.776	0.826	0.659	0.669	0.852	0.908	0.798	0.741	0.741	0.672	0.810
BU-MIL (T15)	0.899	0.769	0.78	0.794	0.688	0.770	0.819	0.887	0.752	0.724	0.670	0.680	0.822
BU-MIL (T16)	0.902	0.776	0.76	0.780	0.664	0.780	0.810	0.893	0.756	0.721	0.663	0.676	0.826
BU-MIL (Phe)	0.904	0.776	0.763	0.793	0.666	0.770	0.833	0.902	0.763	0.729	0.728	0.649	0.809

Table 5: Ablation Study Results

Method	Ru	mor Res	sult	Stance Result					
	AUC	MicF	MacF	AUC	MicF	MacH			
MIL-a	0.892	0.759	0.736	0.672	0.643	0.43			
TD-MIL-b	0.912	0.802	0.746	0.701	0.658	0.426			
TD-MIL-c	0.903	0.805	0.738	0.696	0.653	0.42			
BU-MIL-b	0.901	0.752	0.743	0.698	0.647	0.419			
BU-MIL-c	0.903	0.749	0.742	0.687	0.645	0.419			
TD-MIL	0.917	0.809	0.776	0.722	0.691	0.434			
BU-MIL	0.904	0.776	0.763	0.707	0.665	0.432			

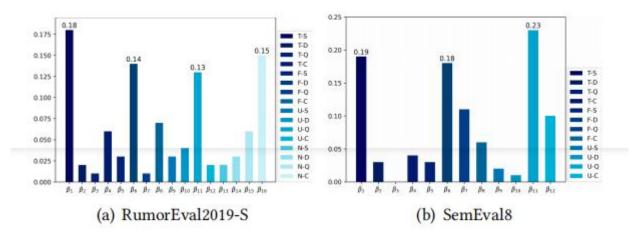
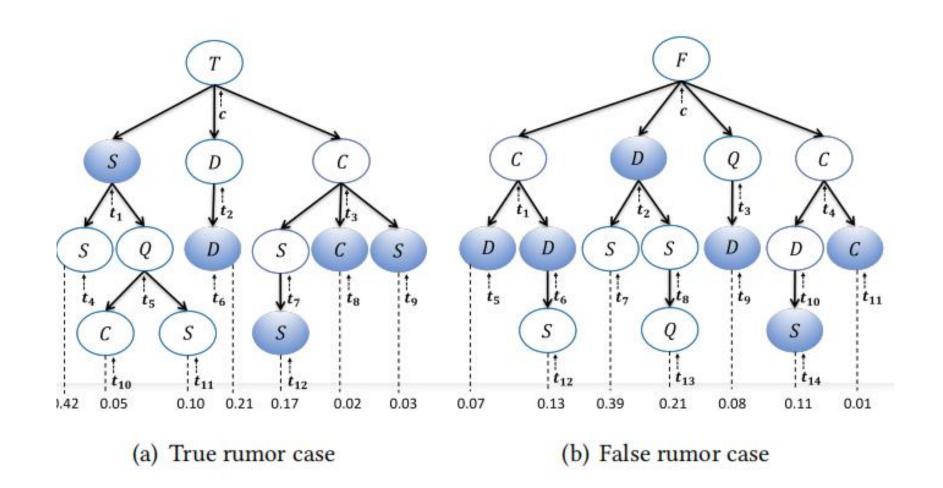



Figure 5: Average Attention Score for Binary Classifiers from Eq. 8). RumorEval2019-S dataset has 16 binary classifiers and SemEval8 dataset has 12 binary classifiers.

Figure 4: Case Study for Tree Attention Mechanism.

Thanks